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3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the formation of mevalonate. In many
classes of organisms, this is the committed step leading to the synthesis of essential compounds, such as
cholesterol. However, a high level of cholesterol is an important risk factor for coronary heart disease, for
which an effective clinical treatment is to block HMGR using inhibitors like statins. Recently the structures
of catalytic portion of human HMGR complexed with six different statins have been determined by a delicate
crystallography study (Istvan and DeisenhoferScience2001, 292, 1160-1164), which established a solid
basis of structure and mechanism for the rational design, optimization, and development of even better
HMGR inhibitors. In this study, three-dimensional quantitative structure-activity relationship (3D QSAR)
with comparative molecular field analysis (CoMFA) was performed on a training set of up to 35 statins and
statin-like compounds. Predictive models were established by using two different ways: (1) Models-fit,
obtained by SYBYL conventional fit-atom molecular alignment rule, has cross-validated coefficients (q2)
up to 0.652 and regression coefficients (r2) up to 0.977. (2) Models-dock, obtained by FlexE by docking
compounds into the HMGR active site, has cross-validated coefficients (q2) up to 0.731 and regression
coefficients (r2) up to 0.947. These models were further validated by an external testing set of 12 statins and
statin-like compounds. Integrated with CoMFA 3D QSAR predictive models, molecular surface property
(electrostatic and steric) mapping and structure-based (both ligand and receptor) virtual screening have been
employed to explore potential novel hits for the HMGR inhibitors. A representative set of eight new
compounds of non-statin-like structures but with high pIC50 values were sorted out in the present study.

Introduction

Cholesterol is a blood fat needed by the body in moderate
amounts. High cholesterol levels can lead to coronary artery
disease, which is one of the leading causes of mortality and
a significant cause of morbidity. One of the most effective
classes of drugs for lowering serum low-density lipoprotein
cholesterol (LDL-c) concentrations is known as statins.
Statins work by blocking an enzyme, 3-hydroxy-3-methyl-
glutaryl-coenzyme A reductase (HMG-CoA reductase or
HMGR), which catalyzes the formation of mevalonate, the
rate-limiting step in the manufacture of cholesterol.1,2

Although current statin drugs have made a great contribution
to lower LDL, there is still a demand for even higher
efficiency and even less side effects.

All statins share an HMG-like moiety (Figure 1) such that
statins compete with the natural substrates for the active

binding sites in the enzyme, inhibiting the catalytic role of
HMGR. Besides this HMG-like moiety, statins consist of
various attachments, which present a hydrophobic anchor.
Thus a common strategy in drug designs is to find refined
artificial inhibitors with simple aromatic and heteroaromatic
motifs to replace the structurally complicated decalin ring
system of those naturally led compounds.

Recently the structures of catalytic portion of human
HMRG complexed with six different statins have been
determined by a series of delicate crystallography studies,3,4

which explained the detailed characterization of the active
site and the HMGR-statin interactions and, therefore, built
up a solid basis of structure and mechanism for the rational
design and optimization of even better HMGR inhibitors.

In the present study, an attempt of structure-based rational
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Figure 1. HMG-like moiety of the statins (in bold). Het represents
heteroaromatic moiety.
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searching of novel active pharmacophore as potentially potent
HMGR inhibitors was made. First, comparative molecular
field analysis (CoMFA)5 three-dimensional quantitative
structure-activity relationship (3D QSAR) studies were
performed on a training set consisting of statins and statin-
like compounds (Figures 2 and 3) using two different
molecular alignment strategies. Second, the as-built CoMFA
models were validated by an external testing set. Meanwhile,
the distributions of the electrostatic and steric fields created
by the CoMFA studies were further checked by comparing
and contrasting them to the MOLCAD-generated electrostatic
and steric potential surface maps based upon the crystal
structure of the HMGR active site. Finally, a new definition
of active pharmacophore was generated by the fingerprints
hypothesis technology of Tuplets,6 which was then used in

the virtual screening of the LeadQuest database.7 In addition
to the conventional statin-like compounds with HMG-like
moiety, some compounds with totally different pharmacoph-
ore structure have also been screened out as well. Eight
compounds with high screening scores obtained by jointly
using a series of virtual screening methods were further
supported by the CoMFA models with high pIC50 values,
lending credit to our current attempts in the quest for potential
HMGR inhibitors with new active pharmacophore.

Materials and Methods

Data Sets for CoMFA Modeling. A set of HMGR
inhibitors was generated carefully. This data set contains the
six statins (Figure 2) used in the crystal structure determi-
nation of the enzyme-statin complexes by Deisenhofer and

Figure 2. Structures of statins3,4 and statin-like inhibitors of human HMGR from MDDR database.8,9 Rosuvastatin is chosen as the template
molecule in Models-fit. The atoms used for fitting are marked with asterisks.
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co-workers.3,4 The rest of the 17 compounds with ID numbers
shown in Figure 2 were taken from the MACCS-II Drug
Data Report (MDDR)8,9 database. Additionally, 24 pyridine-/
pyrrole-substituted 3,5-dihydroxyheptenoates (Figure 3) were
reported10,11to be potent inhibitors of HMGR and, therefore,
were selected into the data set as well.

The training set used for developing CoMFA binding
models was composed of 35 inhibitors with the pIC50 (-log

IC50: the term IC50 represents the concentration of an
inhibitor that is required for 50% inhibition of an enzyme in
vitro) values in a range from 5.7 to 9.52. These inhibitors
were basically randomly chosen from the data set generated
above but were aimed to cover the pIC50 values as wide as
possible to be more representative. The testing set comprised
the remaining 12 compounds of the data set (see Table 2
for details). The three-dimensional structures of all com-
pounds were obtained by using the SYBYL7.0 program
package.12 Partial atomic charges were calculated by the
Gasteiger-Huckel method,13 and energy minimizations were
performed using the Tripos force field14 and the Powell
conjugate gradient algorithm15 with a convergence criterion
of 0.05 kcal/(mol‚Å). All calculations in the present study
were performed on a SGI origin 300 server.

Molecular Alignment Rules for CoMFA Modeling. Two
different alignment rules were adopted in the CoMFA
modeling: (1) SYBYL conventional fit-atom molecular
alignment rule was applied by using the module of SYBYL/
Analyze/Fit-atom. Fit-atom module adjusted the geometry

Figure 3. Structures of 24 pyrimidine-/pyrrole-substituted 3,5-dihydroxyheptenoates.10,11

Table 1. Summary of Results for the CoMFA Binding
Models with Two Types of Molecular Alignmentsa

q2 n r2 F SE E % S %

Models-fit STD 0.361 6 0.974 173.548 0.150 25.7 74.3
RF 0.652 6 0.977 200.120 0.140 25.0 75.0

Models-dock STD 0.562 6 0.935 66.910 0.237 41.9 58.1
RF 0.731 6 0.947 83.064 0.214 42.0 58.0

a STD, standard scaling. RF, region focusing (StDev× coef-
ficient). n ) the optimal number of components to be used in the
final analysis.F ) the ratio of r2 to 1.0 - r2 (explained to
unexplained), weighted so that the fewer the explanatory properties
and the more the values of the target property, the higher theF
ratio. SE, standard error. E %, contribution of electrostatic field. S
%, contribution of steric field.
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of the molecule such that its steric and electrostatic fields
matched the template molecule. The template molecule
chosen in this work is rosuvastatin, which is the most potent
statin currently available. The atoms used for fitting are
marked with asterisks in the template molecule shown in
Figure 2. (2) Molecular alignment using molecular docking
active conformation was achieved by FlexE,16 docking the
compounds into the active site of HMGR. FlexE improves
over FlexX17 of SYBYL18 by not only taking into account
the flexible ligand structures as it is in FlexX but also adding
the ability to account for the protein structural variability.
The efficiency of FlexE has been well-documented in the
literature.19

The whole docking operation of FlexE was done as
follows. The first step was the preparation of the ligands,
which is similar to those for FlexX. The second step was
the preparation of the ensemble structures of proteins. For
each structure, the description of an ensemble contained the
definition of the protein atoms, the resolution of ambiguities
in the PDB file, the location of hydrogen atoms at the hetero
atoms, and the definition of the active site atoms. Torsion
angles and the optimal tautomeric histidine states were
selected by visual inspection of the protein. The side chains
of the lysine and arginine residues were protonated, and the
carboxylate groups of aspartic and glutamic acids were
ionized. Water molecules contained in the PDB file were
removed. In order to define the active site of the protein, all
members of an ensemble were superimposed together with
their reference ligand structure. Six members3 (1HW8,
1HW9, 1HWI, 1WHJ, 1HWK, and the reference structure
of 1HWL) were taken from the Brookhaven Protein Database
(PDB, http://www.rcsb.org/pdb). All atoms located within
the range of 6.5 Å distance from any atom of ligands of the
ensemble were selected into the active site. Then, a residue
was included into the active site if at least one of its atoms
was picked out. The superimposed protein structures and the
reference ligand positions were stored for later cross docking
experiments with FlexX using the same definitions of the
active sites. The third step was to dock all ligands into the
united protein structure with FlexX. All active conformations
were selected from the binding orientation at the active site
of HMGR, jointly evaluated by the consideration of FlexE
Energy Scores (total score) and molecular geometry.

CoMFA 3D QSAR Modeling. CoMFA steric and elec-
trostatic interaction fields were calculated at each lattice
intersection on a regularly spaced grid of 3 Å. The grid
pattern was generated automatically by the SYBYL/CoMFA
routine. An sp3 carbon atom with a van der Waals radius of
1.52 Å and a+1.0 charge was used as the probe to calculate
the steric (Lennard-Jones 6-12 potential) field and the
electrostatic (Coulombic potential) field with a constant
dielectric constant at each lattice point. The electrostatic
energy at the point where the steric energy exceeded the
steric cutoff for any molecule in the analysis was set to the
mean value of the non-excluded electrostatic field. Values
of the steric and electrostatic fields were truncated at 30.0
kcal/mol. The CoMFA steric and electrostatic fields were
scaled by the CoMFA-STD20 method in SYBYL.

A partial least-squares (PLS) approach,21-23 which is an

extension of multiple regression analysis, was used to derive
the 3D QSAR models in which the CoMFA descriptors were
used as independent variables, and the experimental pIC50

values were used as dependent variables. The cross-validation
with Leave-One-Out (LOO) option and the SAMPLS
program24 were applied to obtain the optimal number of
components to be used in the final analysis. After the optimal
number of components was determined, a non-cross-validated
analysis was performed without column filtering. Two best
CoMFA models were obtained finally by using the Region
focusing25 with the weights of StDev× coefficient.

Molecular Surface Physicochemical Properties.Surface
physicochemical property (surface) maps (i.e., electrostatic
potential), hydrophobicity (lipophilicity) potential, and hy-

Table 2. Experimental, Predicted Activities and Residual
Values by the CoMFA-fit-RF and CoMFA-dock-RF Models

pIC50

model-fit-RF model-dock-RF

compd actual predicted residues predicted residues setsa

13 8.52 8.669 -0.15 8.706 -0.19 TR
152938 9.0 9.113 -0.11 8.785 0.22 TR
156773 7.89 7.873 0.02 7.858 0.03 TR
159311 6.89 6.877 0.01 6.995 -0.1 TR
159323 6.92 6.974 -0.05 6.912 0.01 TR
14 6.15 6.155 -0.01 6.009 0.14 TR
160060 8.74 8.777 -0.04 8.780 -0.04 TR
162463 7.74 7.713 0.03 7.597 0.14 TR
162619 8.05 7.948 0.10 8.007 0.04 TR
165690 8.18 8.155 0.03 8.263 -0.08 TR
15 5.7 5.807 -0.11 5.675 0.02 TR
176022 7.72 7.855 -0.13 7.702 0.02 TR
177442 7.31 7.375 -0.06 7.218 0.09 TR
16 9.0 8.735 0.26 9.285 -0.28 TR
17 8.7 8.938 -0.24 8.648 0.05 TR
2 7.0 6.944 0.06 7.237 -0.24 TR
18 8.7 8.800 -0.10 8.514 0.19 TR
19 8.7 8.374 0.33 8.759 -0.06 TR
20 9.3 9.306 -0.01 8.726 0.57 TR
21 8.3 8.222 0.08 8.397 -0.1 TR
22 8.7 8.713 -0.01 8.690 0.01 TR
23 9.52 9.498 0.02 9.079 0.44 TR
24 7.6 7.914 -0.31 8.004 -0.4 TR
3 8.04 8.175 -0.14 8.012 0.03 TR
4 9.0 8.935 0.06 9.213 -0.21 TR
5 8.1 8.043 0.06 7.877 0.22 TR
6 7.66 7.534 0.13 7.770 -0.11 TR
7 7.25 7.276 -0.03 7.476 -0.23 TR
8 8.4 8.424 -0.02 8.389 0.01 TR
Ato 8.1 8.098 0.00 8.210 -0.11 TR
Cer 8 7.828 0.17 8.014 -0.01 TR
Com 7.64 7.632 0.01 7.537 0.10 TR
Flu 7.55 7.427 0.12 7.546 0.00 TR
Ros 8.3 8.171 0.13 8.555 -0.26 TR
Sim 7.96 8.049 -0.09 7.883 0.08 TR
1 7.89 8.430 -0.54 7.824 0.07 TS
9 7.52 7.680 -0.16 8.136 -0.62 TS
10 8.7 8.481 0.22 9.027 -0.33 TS
11 9.0 8.564 0.44 8.921 0.08 TS
12 8.7 8.808 -0.11 8.835 -0.14 TS
140110 7.41 8.499 -1.09 7.349 0.06 TS
142913 7.89 7.396 0.49 8.013 -0.12 TS
144752 7.49 7.893 -0.40 7.714 -0.22 TS
148481 8.06 7.962 0.10 8.190 -0.13 TS
148836 8.07 7.756 0.31 7.660 0.41 TS
156550 8.64 7.311 1.33 8.537 0.10 TS
172873 8.74 8.862 -0.12 8.278 0.46 TS

a TS ) testing set; TR) training set.
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drogen bonding (donor/acceptor) potential maps of the
HMGR active site were generated on the solvent-accessible
surface using the MOLCAD module26 of SYBYL. These
MOLCAD-generated property surface maps were compared
and contrasted to those obtained by CoMFA modeling.

Virtual Screening. Before the crystallographic studies of

Istavan and Deisenhofer,4 the intuitional pharmacophore,
which can be employed in attempts for virtual screening for
better HMGR inhibitors, is the HMG-like moiety (Figure
1). The work Deisenhofer and co-workers further solidified
the structure-based virtual screening.27 In this study, a
generalized definition of active pharmacophore model was

Figure 4. Steric and electrostatic maps from the CoMFA model using fit-atom molecular alignment. Compound 152938 is shown inside
the field. Sterically favored areas (contribution level of 80%) are represented by green polyhedra. Sterically disfavored (contribution level
of 20%) areas are represented by yellow polyhedra. Blue contours (80% contribution) encompass regions where an increase of positive
charge will enhance affinity, whereas in red contoured areas (contribution level of 20%) more negative charges are favorable for binding
properties.

Figure 5. Steric and electrostatic maps from the CoMFA model using active conformation alignment. Compound 152938 is shown inside
the field. Sterically favored areas (80% contribution) are represented by green polyhedra. Sterically disfavored areas (contribution level of
20%) are represented by yellow polyhedra. Blue contours (80% contribution) encompass regions where an increase of positive charge will
enhance affinity, whereas in red contoured areas (contribution level of 20%) more negative charges are favorable for binding properties.

Figure 6. (A) Steric contours projected over the solvent accessible (connolly) topological surface (MOLCAD generated) of the HMGR
active site. (B) Electrostatic contours projected over the electrostatic potential surface (blue, negative potential; red/brown, positive potential)
of the HMGR active site.
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generated by the fingerprints hypothesis technique of Tu-
plets.6 Tuplets (a ligand structure-based) virtual screening
was carried out followed by FlexE and FlexX-Pharm. We
performed the CoMFA modeling (Models-dock-RF) before
FlexX-Pharm,28 which complemented and validated the
TScore results of FlexE. By jointly using the crystal structure
of human HMGR active site, the electronic structure of
statins, and the HMGR-statin interaction information, H-bond
donor and H-bond acceptor constraints of five residues were
generated by FlexX-Pharm.28 FlexX-Pharm enables phar-
macophore-type constraints to be used in FlexX to guide
ligand docking.

Results and Discussion

CoMFA 3D QSAR Modeling. Table 1 summarizes the
PLS analysis results for two types of CoMFA 3D QSAR
modelings: Models-fit and Models-dock. Models-fit has
cross-validated coefficients (q2) up to 0.652 and regression
coefficients (r2) up to 0.977; Models-dock has cross-validated
coefficients (q2) up to 0.731 and regression coefficients (r2)
up to 0.947. These lead to two best models based on the RF
(Region focusing) method.

Table 2 presents the predicted activity values and their
residues from the experimentally measured pIC50 for the 35
inhibitors in the training set and the 12 inhibitors in the
testing set (different choices of training set and testing set
lead to virtually the same results). The numerical results in
Table 2 show that our present CoMFA models have good
predictive power, the predicted pIC50 values are generally
in good agreement with the experiment data and the residuals
are all small. Compared with the results of Models-fit,
Models-dock has higher cross-validated coefficients, lending
credit to the reliability of active conformations obtained by
FlexE.

The contribution of the steric field to the activity is 75.0%
and that of the electrostatic field is 25.0% based on Model-
fit-RF. For the Model-dock-RF, these numbers are 58.0%
and 42.0%, respectively. Figures 4 and 5 show the 3D steric
and electrostatic maps with the compound 152938, the most
potent inhibitor in MDDR,8,9 shown inside the fields. As two
models lead to very similar results, only results from Model-
dock-RF will be discussed here. The 3D contour maps show
that the changes of molecular fields are associated with the
differences of biological activity. The steric fields are in green
and yellow. The region of green contour suggests that more
bulky substituents in these positions will improve the
biological activity, while the yellow region indicates that an
increased steric bulk is unfavorable for the inhibitory activity.
The p-phenyl-monofluoride in R1 of 4 in Figure 3 is in the
green region, and thep-phenyl-monofluoride of R2 is far from
the yellow region, resulting in a higher activity of 9.0. The
p-phenyl-monofluoride in R2 of 15 is in the yellow region,
leading to a lower activity of 5.7.

Figure 6A shows the steric contours projected over the
solvent accessible topological surface (MOLCAD generated)
of the HMGR active site. The yellow region (a) flanks the
imidazole of the His752 residue, while the yellow region
(b) is located along the surface of residues toward the outside
of active site cavity. The green region is located on the top
right corner with larger room of the active site cavity. These
steric field distributions of CoMFA model (Model-dock-RF)
guarantee a larger percentage of the ligand volume buried
inside the binding pocket.29,30

Figure 6B shows the electrostatic contours projected over
the electrostatic potential surface (MOLCAD generated) of
the HMGR active site. The CoMFA electrostatic fields in
blue suggest that the positively charged substations may
increase the inhibitory activity, while the red region indicates
that a high electron density may play a favorable role in
inhibitory potency. The blue regions of the MOLCAD
generated contour maps represent a negative electrostatic
potential; the red regions represent a positive electrostatic
potential. The large blue region of CoMFA contour matches
well with the blue (highly electronegative) surface of the
binding site provided by the carboxyl group of the Asp690
residue. The red region of the CoMFA contour map is located
on the surface of residues toward outside of the active site
pocket. The comparison of the two types of contour maps
shows that the present CoMFA model generally matches well
with the active site pocket of HMGR.

Virtual Screening. (1) Selection of the Testing Set and
Initial Filtering To Satisfy the Lipinski Rules. To control
the performance of our strategy, six well-known HMGR
inhibitors3,4 were added to the search samples whose ap-
pearance in the hit list served to calibrate and validate the

Table 3. Total Scores of FlexE and the Predicted pIC50 of CoMFA (Model-dock-RF) for 10 Selected Compoundsa

1 2 3 4 5 6 7 8 9 10

total score of FlexE -16.29 -9.04 -17.54 -33.78 -30.84 -27.83 -10.05 -13.55 -15.98 -15.55
pIC50 of CoMFA 7.86 8.28 7.93 7.17 6.34 5.64 6.04 5.79 6.11 6.17

a 1-3 are compounds with low total score of FlexE, but high pIC50 of CoMFA; whereas4-6 are compounds with high total score of
FlexE, but low pIC50 of CoMFA. 7-10 are compounds with low scores of both Methods. MDL database, test set:1, 142913;2, 172873;
3, 140110. LeadQuest:4, 1525-04329;5, 1465-00080;6, 1525-03160;7, 1502-12305;8, 1534-04609;9, 1502-01284;10, 1534-04900.

Figure 7. Pharmacophore constraints constructed by FlexX-Pharm.
H_ACC denotes H-bond acceptor, H_DON denotes H-bond donor.
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approach at each stage. Search entries for our analysis were
taken from the LQSample/LeadQuest databases (41 393
entries). We used the criteria defined by the Lipinski rules31

(e5 H-bond donors (no. of OH and NH groups),e10
H-bond acceptors (no. of O or N atoms), MWe 500Da,M
log P e 5) to pre-select the database.

(2) Ligand-Derived Pharmacophore.According to the
information of a set of compounds which are known to bind
to HMGR, we obtained a flexible and effective pharma-
cophore using the Tuplets module of SYBYL. With this new
pharmacophore definition, all six statins as test samples were
retrieved successfully from the database. The new pharma-
cophore served as query to screen the database preselected
out of LeadQuest at the first step. Of the pre-selected
database, 4138 entries satisfied the pharmacophore query in
the Tuplets screening.

(3) Docking with FlexE. In this step, the 4138 entries
were docked into the binding pocket using FlexE docking
program; all the parameters used were the same as those of
FlexE mentioned above. The results were retrieved by
selecting the best docking solution for each ligand according
to TScore.

(3′) CoMFA Modeling. At this stage, we also performed
the CoMFA modeling. On one hand, FlexE score is sensitive
to the hydrogen bond formation, putting higher weights on
this term than to the steric effect on the activity; on the other

hand, CoMFA is more sensitive to the steric field, being
directly related to the activity. Thus the predicted pIC50 value
by CoMFA complimented and validated the TScore results
of FlexE. Table 3 listed a few examples. We put more
confidence on those entries with high scores from both
CoMFA modeling and FlexE docking and discarded those
with low scores from both methods. We emphasized not to
overlook those entries evaluated high only by one model.

(4) Docking with FlexX-Pharm. In the final step, the
2291 best-ranked hits from the FlexE and/or CoMFA filtering
were docked into the bindig sites by using the FlexX-Pharm
modeling. FlexX-Pharm constricted the number of possible
poses and increased the inactive drop-out rate. In the present
study, FlexX-Pharm constraints were constituted by five
residues with H-bond donor and H-bond acceptor based on
known crystal structures of HMGR complexed with statins.
These residues are LYS735, SER684, ARG590, ASN755,
and LYS691, respectively. The H-bond donors of LYS735
and ASN755 were set as essential, while the H-bond donors
of ARG590, SER684, and LYS691 and the H-bond acceptor
of SER684 were set as optional. Only when the compounds
fitted three or more of these constraints (as illustrated in
Figure 7), they were considered as being docked successfully.
This is an important step. As we are looking for potent
HMGR inhibitors which are competitive to the substrate, it

Figure 8. Eight potential hit compounds with high total scores of FlexE and FlexX-Pharm as well as high predicted activities of pIC50

from CoMFA (Model-dock-RF). The ninth one isR-asarone, which is the main biological active component of the bark extract ofGuatteria
gaumerithat Greenman utilized in Mexico to treat hypercholesterolemia and cholelithiasis.35 Note that structures of all these compounds
are not statin-like.

Table 4. Total Scores of FlexE and FlexX-Pharm As Well as the Predicted Activities (pIC50) from CoMFA (Model-dock-RF)
for the Eight Hit Compounds Whose Structures Are Not Statin-like (cf. Figure 8)

1 2 3 4 5 6 7 8

total score of FlexE -30.86 -26.52 -28.87 -25.88 -24.74 -28.76 -26.07 -25.16
pIC50 of CoMFA 7.94 7.68 8.08 7.94 7.81 7.85 7.83 7.77
total score of Flex-Pharm -29.57 -38.58 -30.06 -28.51 -26.42 -28.49 -22.19 -24.13
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is vital that the ligands of the inhibitors interact well with
these key residues.

Figure 8 depicted eight representative compounds with
high total scores of FlexX-Pharm (see Table 4). We
emphasized here that structures of all these compounds are
not statin-like. Table 4 also summarized the total scores of
FlexE as well as the predicted bioactivities of pIC50 from
CoMFA (Model-dock-RF). The ninth one isR-asarone,
which is the main biological active component of the bark
extract of Guatteria gaumerithat Greenman utilized in
Mexico to treat hypercholesterolemia and cholelithiasis.32 The
total scores of FlexE are within the range from-24.74 to
-30.86; while the predicted bioactivities of pIC50 from
CoMFA are between 7.68 and 8.08. For the ninth compound
(R-asarone), our present CoMFA binding model predicted a
higher pIC50 value of 7.41. Thus the ranks of the predicted
bioactivities by CoMFA were generally in good agreement
with those of FlexE and FlexX-Pharm virtual screening,
which implies that our virtual screening strategy with a new
pharmacophore definition is most likely practicable and that
the union of using CoMFA models and the structure-based
virtual screening procedure is promising for rational quest
and optimization of potential novel HMGR inhibitors.

Conclusion

We have established predictive CoMFA 3D QSAR models
for the human HMGR inhibitors with two different molecular
alignment strategies. Models-fit was built by conventional
fit-atom molecular alignment rule of SYBYL. Models-dock
was obtained using active conformation alignment obtained
by FlexE molecular docking. The latter was found to perform
better than the former in the present study. Molecular surface
property (electrostatic and steric) mapping and structure-
based (both ligand and receptor) virtual screening have been
integrated with CoMFA 3D QSAR predictive models,
leading to eight potential novel hits for the HMGR inhibitors,
which possess no common HMG-like moiety but with high
pIC50 value.
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